基于网络药理学与分子对接技术探究半夏-夏枯草药对治疗高血压的分子机制Molecular Mechanism of Hypertension Treatment by Couplet Medicines of Rhizoma Pinelliae and Spica Prunellae Based on Network Pharmacology and Molecular Docking
张泽宇,张芯
摘要(Abstract):
目的采用网络药理学与分子对接方法,研究半夏-夏枯草药对治疗高血压的具体药效物质与作用机制。方法通过TCMSP数据库筛选出半夏、夏枯草的活性成分及其对应靶点;在genecards数据库中检索得到高血压的相关基因靶点,并使用Venn工具进行交集比对,筛选出共同靶点。利用Cytoscape 3.7.2软件绘制化合物-靶点网络进行拓扑学分析;将筛选的靶点在STRINC数据库平台中构建蛋白质-蛋白质相互作用(PPI)网络进行预测;同时,用Bioconductor数据库进行KEGG通路富集分析。使用分子对接软件(AutoDock Vina)将核心靶点与化合物进行分子对接,并使用绘图软件Pymol和Ligplus将结果可视化。结果从半夏-夏枯草药对中共筛选出20个活性化合物,包括槲皮素、山柰酚、木犀草素等,关键作用靶点包含白细胞介素-6(IL-6)、苏氨酸蛋白激酶(Akt1)、肿瘤坏死因子(TNF)等,主要涉及糖基化终产物-糖基化终产物受体(AGE-FRAGE)、TNF、白细胞介素-17(IL-17)等信号通路。结论半夏-夏枯草药对治疗高血压具有多成分、多靶点和多通路参与的特点;利用网络药理学与分子对接技术可有效挖掘与分析药物的潜在作用与起效机制。
关键词(KeyWords): 高血压;半夏;夏枯草;网络药理学;分子对接;分子机制;药对
基金项目(Foundation): 国家自然科学基金项目(81904100)
作者(Author): 张泽宇,张芯
参考文献(References):
- [1]中国高血压防治指南(2018年修订版)[J].中国心血管杂志,2019,24(1):24-56.
- [2] Wang Zengwu,Chen Zuo,Zhang Linfeng,et al. Status of Hypertension in China:Results From the China Hypertension Survey,2012-2015[J]. Circulation,2018(137):2344-2356.
- [3]陈克敏.陈伯涛治高血压经验[J].江西中医药,1992,42(3):12.
- [4]梁振培,林宇,刘明,等.蔡炳勤巧用阴阳药对治疗不寐[J].山东中医杂,2019,38(3):242-244,249.
- [5]刘媛,高嘉良,孟淑华,等.夏枯草-半夏在治疗甲状腺功能亢进症中的应用[J].北京中医药,2014,33(8):634-635.
- [6]左军,牟景光,胡晓阳.半夏化学成分及现代药理作用研究进展[J].辽宁中医药大学学报,2019,21(9):26-29.
- [7]张金华,邱俊娜,王路,等.夏枯草化学成分及药理作用研究进展[J].中草药,2018,49(14):3432-3440.
- [8]胡亚洁,赵晓锦,宋咏梅,等.基于网络药理学的中药复方研究探讨[J].时珍国医国药,2018,29(6):1400-1402.
- [9] Wu Rong,Li XiaoYan,Wang WenHai,et al. Network pharmacology-based study on the mechanism of bushen-jianpi decoction in liver cancer treatment[J]. Evidence Based Complementary&Alternative Medicine,2019(2019):1-13.
- [10] Trott O,Olson AJ. Auto Dock Vina:improving the speed and accuracy of docking with a new scoring function,efficient optimization and multithreading[J]. Journal of Computational Chemistry,2009,31(2):455-461.
- [11]朱震亨.丹溪心法[M].北京:人民军医出版社,2007:235.
- [12]王琼,冼绍祥,陈洁,等. 495例老年高血压病的中医证候规律探讨[J].广州中医药大学学报,2014,31(5):739-742,745.
- [13] Grande F,Parisi OI,Mordocco RA,et al. Quercetin derivatives as novel antihypertensive agents:Synthesis and physiological characterization[J]. European Journal of Pharmaceutical Sciences,2016,82(82):161-170.
- [14] Xu YC,Leung SWS,Leung GPH,et al. Kaempferol enhances endothelium-dependent relaxation in the porcine coronary artery through activation of large-conductance Ca(2+)-activated K(+)channels[J]. British journal of pharmacology,2015,172(12):3003-3014.
- [15]薛冰,丁东新,顾平生,等.老年高血压患者血清TNF-α,IL-6的变化及其临床意义[J].放射免疫学杂志,2004,17(4):270-271.
- [16] Sankhe Safietou,Manousakidi Sevasti,Antigny Fabrice,et al.T-type Ca2+channels elicit pro-proliferative and anti-apoptotic responses through impaired PP2A/Akt1 signaling in PASMCs from patients with pulmonary arterial hypertension[J].Biochimica et biophysica acta,2017,1864(10):1631-1641.
- [17] Anna Puszkarska,Arkadiusz Niklas,Jerzy Gluszek,et al. The concentration of tumor necrosis factor in the blood serum and in the urine and selected early organ damages in patients with primary systemic arterial hypertension[J]. Medicine,2019,98(22):e15773.
- [18] Prasad K. AGE-RAGE Stress in the pathophysiology of pulmonary hypertension and its treatment[J]. International Journal of Angiology,2019,28(2):71-79.
- [19]黄金梅,曾高峰.正常高值血压患者血流剪切力对内皮细胞功能的影响[J].医学信息(上旬刊),2011,24(1):245-247.
- [20]周骞,段吾磊,唐路军,等. TNF-α与原发性高血压的相关性及中医药干预研究进展[J].中国循证心血管医学杂志,2017,9(2):240-242.
- [21] Wenzel U,Bode M,Kurts C,et al. Salt,inflammation,IL-17and hypertension[J]. British Journal of Pharmacology,2019,176(12):1853-1863.