基于网络药理学和分子对接探讨散寒化湿宣肺方抗新型冠状病毒活性化合物的初步研究A Preliminary Study on Anti-SARS-CoV-2 Active Compound of Sanhan Huashi Xuanfei Formula Based on Network Pharmacology and Molecular Docking
杜帅琳,王玉,张玲,万海同
摘要(Abstract):
目的探寻散寒化湿宣肺方(SHXF)中抗新型冠状病毒(SARS-CoV-2)的活性化合物。方法借助TCMSP等数据库检索SHXF方中苍术、陈皮、厚朴、藿香、草果、生麻黄、羌活、生姜、槟榔所含化学成分与作用靶点。通过Cytoscape软件绘制化合物-靶点网络图和PPI网络图对化合物和靶点进行拓扑分析。采用DAVID6.7数据库对靶点进行GO功能和KEGG通路富集分析;利用AutoDock Vina对SHXF关键化合物与SARSCoV-2 3CL水解酶和Nsp15蛋白进行分子对接。结果经筛选获得SHXF共85个活性化合物与214个作用靶点,关键靶点涉及Akt1、IL-6、MAPK3、VEGFA、JUN等。GO富集分析得到功能条目599个(P <0.05),其中生物过程(BP)460个,细胞组成(CC)55个,分子功能(MF)84个。KEGG通路获得113条(P <0.05),主要涉及甲型流感(Influenza A)信号通路、TLR(Toll-like receptor)信号通路、PI3K-Akt信号通路、HIF-1信号通路等。分子对接结果显示SHXF中槲皮素、柚皮素、谷甾醇等核心化合物与瑞德西韦等推荐用药亲和力相似。结论 SHXF中的槲皮素、柚皮素、谷甾醇等核心化合物可与SARS-CoV-2 3CL水解酶和Nsp15蛋白结合,或为治疗新型冠状病毒肺炎的活性化合物。
关键词(KeyWords): 新型冠状病毒;新型冠状病毒肺炎;网络药理学;分子对接
基金项目(Foundation): 国家自然科学基金重点项目(81930111)
作者(Author): 杜帅琳,王玉,张玲,万海同
参考文献(References):
- [1] Wu F,Zhao S,Yu B,et al. A new coronavirus associated with human respiratory disease in China[J]. Nature,2020,579,265-269.
- [2] Zhou P,Yang X,Wang X,et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature,2020,579,270-273.
- [3] Huang CL,Wang Y,Li XW,et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan China[J].Lancet,2020,395:10223.
- [4]刘千勇,王晓良.新型冠状病毒(2019-nCoV)的靶向药物研究策略[J].药学学报,2020,55(2):181-188.
- [5]国家卫生健康委员会.关于印发新型冠状病毒肺炎诊疗方案(试行第七版)的通知[EB/OL].[2020-04-17]. http://www.nhc.gov.cn/yzygj/s7653p/202003/46c9294a7dfe4cef80dc7f5912eb1989.shtml.
- [6] Hopkins AL. Network pharmacology[J]. Nat Biotechnol,2007,25(10):1110-1111.
- [7]黄启和,周福军,徐旭,等.基于分子对接技术虚拟筛选延胡索抗心肌缺血物质基础研究[J].中草药,2019,50(10):2355-2361.
- [8] Ru J,Li P,Wang J,et al. TCMSP:a database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform,2014,6:13.
- [9] Ahmed SS,Ramakrishnan V. Systems biological approach of molecular descriptors connectivity:Optimal descriptors for oral bioavailability prediction[J]. PLoS One,2012,7(7):e40654.
- [10] Ursu O,Rayan A,Goldblum A,et al. Understanding druglikeness[J]. Wires Comput Mol Sci,2011,1(5):760-781.
- [11] UniProt Consortium T. Uniprot:the universal protein knowledgebase[J]. Nucleic AcidsResearch,2017,45(D1):D158-
- [12] DBu1r6l9e.y SK,Berman HM,Kleywegt GJ,et al. Protein Data Bank(PDB):the single global macromolecular structure archive[J]. Methods Mol Biol,2017,1607:627-641.
- [13]徐森楠,庄莉,翟园园,等.基于网络药理学研究二至丸防治骨质疏松症的物质基础与作用机制[J].中国药学杂志,2018,53(22):1914-1920.
- [14]汪迎. HIF-1、VEGF在慢性阻塞性肺疾病中的表达及临床意义[D].南昌:南昌大学,2019.
- [15] Ank N,Iversen MB,Bartholdy C,et al. An important role for typeⅢinterferon(IFN-α/IL-28)in TLR-induced antiviral activity[J]. Journal of Immunology,2008,180(4):2474-2485.
- [16] Heil Florian,Hemmi Hiroaki,Hochrein Hubertus,et al. Species-specific recognition of single-stranded RNA via tolllike receptor 7 and 8[J]. Science,2004,303:5663.
- [17] Urata,Shuzo,Ngo,Nhi,de la Torre,Juan Carlos. The PI3K/Akt pathway contributes to arenavirus budding[J]. Journal of Virology,2012,86(8):4578-4585.
- [18] Kindrachuk Jason,Ork Britini,Hart Brit J,et al. Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for middle east respiratory syndrome coronavirus infection as identified by temporal kinome analysis[J]. Antimicrobial Agents&Chemotherapy,2015,59(2):1088-1099.